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Abstract

A class of semilinear autonomous functional differential
equations of retarded type is studied by associating with it

evolution equation in the space of imtial data, the space
C ([r, 0]; X). Existence, uniqueness and regularity results a

proved.

l. INTRODUCTION

Let X be a Banach space endowed with a norm || and r be any nonnegative
real number.

Let C = C ([r, 0): X) be the Banach space of continuous functions map-
ping the interval [-r, 0] into X.

Consider the following semilinear functional differential equation of retar-
ded type :

i—‘: =Az(t) + F(z),20=0=C([-r,0; X),0<t < T, (1)

By a Solution x of equation (1) we mean a function mapping [-r, T] into

X, such that z,€ C (fr, 0): X), For all t € [0, T] and satisfying equation (1),
where x; is the history of x at time t defined pointwise hy
1(0 ] =x(t+6 ); -1 <F<0
For ¢ € C ([, 0]; X), we set
ol = supaet—ray [416)]

And suppose the following hypotheses

we prove that A generates a semigroup of operators 7(t) and x(t) defined
by :

x(t) = (t) if t € [1,0]
x(t) = (T(t)¢)(0) if t € [0,4-00]
Is the unique solution of equation (1), continuous on [-r, 400 [.

The existence of a nonlinear semigroup of operators associated to (1) is de-
duced from the following general result of M.G.Crandall and T.Liggett [2] :
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Theorem 1 : Let X be a Banach space

If A be an operator (nonlinear) a-dissipatif (o € R) and

Im(I-AA) Dm:fm‘ all A =0 small enough

Then

T(t)e = limp— gl — %A)_HI, existsforalle € m (3)

And the family of applications T (t) : D(A) — D(A) is a nonlinear Cy-

semigroup.

The Crandall-Liggett theorem is a generalization of the Hille- Yosida-Phillips
theorem [12].
In the linear case, we have Ad =£-t'm,_,gm and t = T(t) is a solution of
the Cauchy problem, while this result does not hold in general in the nonli-
near case. It holds however if X is reflexive ([1], [3]).
Hence, we prove that the operator defined by (2) is a infinitesimal generator
of T (1).
Lemme 1 Suppose That (Fy) and (I} are satisfied. then, for all A €]0,1]
and & £C, we have

(J$)(0) = LAF(To) + 6(0)]. (5)

proof : From proposition la), we have for all ©» € C there exists ¢ ED(A)
such that (I-AA)d = 1, that is,

0
&(0) — eSb(0) + % f T (s)ds, (6)
a
and $(0) — (D) + A (0) = ¢ (0) + A(As(0) + F)o)).
Therefore
]
B(0) = (I — M) AF(e6(0) + % f e p(s)ds) + (D). (7)

Forall Ae]o, %[ and ¢ € C, Jy¢ exists and Jyé € D(A), given by

. . [
(Fré)(8) = 3 (D) (0) + Xf 'S 4(s)ds, ford € [—r,0]. (8)
]
From (7) and (8), we have (j)q‘z‘)(ﬁ') = ngA[A F(’jé)Jr &(0)] + %feu 52 ¢(s)ds;

50,
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In addition if for all t €]0,+0c[, z(t) € D{A), and the map
(.]r: .]A[AF Jr) + o )] _ .
{ — Ax(t) is continuous, then the solutin 2(t) is of elass C* on [-r,+00],
The nonlinear semigroups of Crandall-Liggett are not always differen-

tiable (see [2]) Then we define the infinitesimal generator of T(t) hy Lemme 3 : Suppose That (Hy) and (Hy) are satisfied. Then, for each ¢ €

B = lim,_,o 222 if ¢ cD(B) {r,) c ' lime Mem ﬂ‘s}
C,t> 0and forall j € {1,..m}, k € {0,...p — 1}, we have
Lemme 2 Suppose That (Hy ) and (Hy) are satisfied, then, pEEE:o li?71m—>+oojgp_k)_j+l[F(jg+3¢f?) - F(j%cfé}ﬂ =0. (12)
(a) for all ¢ € C, for all n =1 we have
: and for all p € N, we have
lime o230 ‘J’“ [E(T=6) - F{a)] = 0
(b) for all ¢ € C, and n > 1, we have im0 10 TV - Fg)) = 0. Uity oo [T ETRIIHL =B o kg — ), (13)
" mp mp mp

(¢) for all 6 € C, such that ¢(0)e D(A), we have

limyo hm"_’+°° ! J L-14j(0) = 0. Lemme 4 : Suppose That (Hy) and (Hy) are satisfied. Then, for each ¢ €

Proposition 2 Suppose That (Hy) and (Hy) are satisfied, then, C.t2 0, we have
(a) for all $ € C, ff”/“;’) (0) = (@)t +0)if -+ <1 +0 <0, limp—qoe liMmoqoo 1‘-' mLpZi;é Z;":ljgp—k)—jﬂ F o jgmxc ~ fzp m(p k)
(b) The operator A defined by (2) is an infinitesimal generator of (T tj (1.€. Fy j:?—f )] =0.
A=) proof : For each ¢ € C and = 0, we have
Hence, 75 Lo gy TR (FIG) — L3R TR O F (k)
( 1‘@)(0) —o(0) [’jn #)(0) = o(0) < e {—Dzm J-rm(p k)= J+1F('szk¢) o JmL(p—k)FUmLkm
% —o(0) = % — Ap(0) — F(o). (10) mF o P
S o p_ng 1 m(p F)— J+1[F(J£mkdj) - F(’J“ikrr-'}‘)] n
n—1 7li+1) Fn—i | (i+1) mp ™mp
1 z TEVRCTE0) - B + ST ™ -1 F()] Lyt ,,:(pfmﬂ ey g
+1] [J%— I- T;A] 6(0) mp = = -

and the result follows from lemma 3.
And by lemma 2, we have

lim; w= lim, o limf‘””%[ ( jﬁ:d))(o) ~9(0) proof. f theorem 2 :

= Ag(0) + F(9) .
. We have to show that T(t)¢ verifies the delay equations (1). We will look
=a(0); at the integral form

x(t) = T(t)o(0) + [, T(t-s)F(z,)ds,
thus ¢ €D(B) and Bp = Ag = ¢ i i that is,
Conversely, we shall prave that 1f ¢ €D(B) then ¢ €D(A) and A¢ =Be.In
fact, let phi €D(B), then Bé=lim,_q Tmf)_¢:q5; existe in C,
so,6 €CT and

L‘jz
=
S
Il
=
+
==
=
o
=}

-s)F(T'(s)¢)ds.

w write (9) as

o1 g (LA - 6(0) Jol e 2 et ot -
P[0) = E%f :B% iwn,_.+m [ J;q.) (0)—o(0).  (11) ( %4-:;(0) - J%w(ﬂ) . Z_;‘JHF( s @); (14)
We will prove that c‘:)( 0) = ﬂm( } + I'(¢). From (14) and lemma 2, we have by a chlamg,e1 of variable n-i = j, one obtfllns
lim, g ['5'77?(—»+ool[ :{J )(0) - $(0)] = Ag(0) + F(g). Ly T E( J“"‘u) Iy 1.}" AR Jif,)
So, by (11) one obtfuns (0) = Ad( 0) + F(¢). Hence, 6 € D(;lj and A = and we chiange n by mp, we have
B = ¢. t

S SPRIE R (P 6) = 5 ST T ()

mp R

Also, from (4), we have

L8 N~ VR T .
3 Main result I_JZ Jm:“ BT f o) — EZ Tit- ?)F(T(}—]Jfﬂ): asm — +oo,  (15)
k=0 k=0
¢ ks th ‘ )
=S (= =0 F(T(=)6),— | T(t—s)F(T(s)é)ds,asp = +oo  (16)
Theorem 2 : Suppose That (H, ) and (Hy) are satisfied and ¢ be an clement s p p 0

of C([-r,0]:X).Then, the equation (1) has a unique solution, continuous on
[-r,+00f and given by
aft) = o(t) if t€ [, 0]

aft) = (T(t)o)(0) if t €[0,400].
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mpE"_éZJ VTR RTE ) [T~ ) F(T(s)0)ds

=1 m

p—l
mip=k)=i+1 o fmieti mip=k) e Fmk i
mngj F J o) — ZJ# F(I)

k=0

(17)

+ ﬁZ’E;E JI“”“FU”E ) =tV

T(t - k) P(T(&)g)

(t——f F(Ty (.:—Jf TT—R‘F(T(&J&))(IS

3

and from lemmas 3.4, (15) and (16), the right-hand side of (21) tends to
zero as m,p —+ + oo, Therefore, if we pass to limit in (14) as 1 — + oo, We
have

( T(t)9)(0) = T(t)s(0

t
= T(1)6(0) + f T(t — 5)F(x.)ds,

Now, we prove that x(t] is the unique solution of (1). In fact, from ( Hy),
(HZJ and (18), we have

) + [T (ts)F(T(s)d)ds.
that is,

(18)

e = el = sup-reacola(t +6) = y(t +9)
—SUp—rgpes ‘ [Tt +6- )(Flag) - B yg))ds‘

< fi - ds:

S0, by Gnonwall's lemma, we have z, =y, for all t > 0.

Theorem 3 Suppose That (Hy) and (Hy) are satisfied If we have ( T (t)p)(0)e

D(A) and t —A(T(t)6)(0) is continuous on [0,+00[. Then,
(a) T(t}p € D(A), for all t >0.
(b) T(t)C D), forall t > r.

proof :(a) For all § €f-r,0), we have z, = T(t)d.i.e.

x(t+) = (T(t)o)(6) = ( T(t+#)g)(0) if t + 6> 0.
x(t 4 8) =(T(t)g)(B)= olt+) if (¢ + 6)< [10].
So,
(T(1)6)(6) = ( T(t+6)@)(0) + [iT ' T(t+6-5)F(T(s)g)ds if t + 6>

(T(t)6)(8) = d(t+6) if (t+6) € [-1,0]

We will prove that T(t)¢ €D(A). In fact,

L(T(t)e) @) =A (T F(T(t46)0) if t + 60.

jé(‘f() )(0) = %rh(t+9)if(t+ﬁje[—-r,0].

¢ €D(A), s0 ¢ €C and ¢ = Ad(0) + F(¢). Thus the map § — L (T
is continuous on [-r,0] and d—‘é(f(t)m(o'}:A (T(t)p(0)) + F(T(t)¢). T
T(t)¢ € D(A).

(b) Let ¢ € C and t > r( t+6>0). From (19), we have

(t40)0)(0) +

HT(08)(0) = A (T(6+6)0)(0) + F(T(t+0))
As the same thf{t (a) we have T'(t)¢ €D(A), forall ¢ € Cand t >
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